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Abstract: Numerous multivariate chemometric approaches have been developed for LC-UV data acquired using a diode- 
array detector (DAD), but these methods have not been widely exploited for LC-MS data. Principal component analysis 
(PCA) and subsequent axis rotation within the reduced factor space are assessed for LC-DAD and LC-MS data as 
approaches for estimating the number of components (i.e. the rank of the data) under a single chromatographic peak for 
compounds whose UV-spectra are very similar. Multivariate techniques for LC-DAD data are shown to suffer from 
inherent limitations of sensitivity for the minor components. The novel technique in LC-MS of plotting the rotated PCA 
data in two-dimensional factor space generates characteristic ion clusters, giving a visual criterion of peak purity. Single 
ion chromatograms produced subsequently confirm the profile of each coeluting component and give evidence of the 
degree of peak overlap. The application of this new chemometric technique to the detection of low levels of coeluting 
impurities by LC-MS is discussed as a novel approach for the validation of LC separations in pharmaceutical research and 
development. 

Keywords: Liquid chromatography; thermospray mass spectrometry; peak purity; multivariate analysis; principal 
component analysis; diode-array detection. 

Introduction 

One of the primary aims of LC method 
validation in the pharmaceutical industry today 
is to assess the purity of the analyte peak. In 
fact, homogeneity rather than purity is the 
property that is usually measured, since very 
few techniques currently available are able to 
detect the case of exact coelution. An example 
where peak purity is an essential requirement 
for validating an analytical method would be in 
the long-term stability study of a finished 
product. For this, stressed samples of the 
product are analysed by the proposed method 
and the resulting analyte peak is subjected to 
one or more of the so-called peak purity tests. 
These include graphical methods such as spec- 
tral overlays [1], iso-absorbance plots [2], 
three-dimensional projections of wavelength- 
time-absorbance data [3], higher derivative 
transformation of spectra [4], as well as 
numerical techniques such as absorbance ratio 
[5], spectral suppression [6], purity parameter 
[7], absorbance index [8], multiple absorbance 
ratio correlation [9] and peak area correlation 
[10]. 

The major limitations of these univariate 
approaches can be summarized as follows: 

(i) With graphical methods, close overlap of 
a related compound always produces a com- 
posite spectrum which shows little significant 
difference from that of the pure compound. 
Such small differences are thus difficult to 
detect, so that only relatively high levels of 
impurity can be observed. 

(ii) With numerical methods, where there is 
no information on the spectrum of the over- 
lapping impurity or its retention time, many of 
these techniques suffer from inappropriate 
wavelength and/or timepoint selection. Some 
recent techniques such as the purity parameter 
[7] and peak area correlation [10] overcome 
this limitation very elegantly by sampling 
ranges of data from both the spectral and the 
time domains. In spite of this all these uni- 
variate techniques suffer from an under-utiliz- 
ation of the available information, resulting in 
a lack of generality of application. 

The main thrust of developments in multi- 
variate analysis originated from the early work 
of Malinowski [11] and Kowalski et al. [12], in 
which they propounded the use of principal 
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component analysis and factor analysis for the 
examination of chemical data. These 
mathematical procedures have since been 
applied to the examination of multivariate data 
sets generated by various hyphenated analyt- 
ical techniques. 

PCA is often applied as the first stage of data 
analysis, in order to determine the rank of the 
data, i.e. the most probable number of over- 
lapping components in the data set, excluding 
noise. The final solution is generated after 
rotation of the principal axes within the 
reduced factor space, in order to simplify the 
data structure by maximizing the association of 
the high loading variables with the relevant 
factor, as discussed below. 

Developments of this form of multivariate 
analysis include rank annihilation factor 
analysis (RAFA) [13], evolving factor analysis 
(EFA) [14], iterative target transformation 
factor analysis (ITTFA) [15, 16] and heuristic 
evolving latent projections (HELP) [17]. 

Operations in multivariate analysis 
Multichannel chromatographic data can be 

represented in the form of an s by t matrix, D, 
where s is the number of spectral channels 
(wavelengths or m/z values) and t is the 
number of timepoints across the chromato- 
graphic peak at which the spectra were 
collected. Therefore, the signal measured at a 
single spectral channel i and timepoint t for a 
system consisting of n components can be 
expressed algebraically as: 

k=n 
D i j =  ~ Aik 'Ckj ,  (1) 

k=l 

where Aik is the normalized spectral amplitude 
of compound k at spectral channel i, and Ckj is 
the chromatographic elution profile of com- 
pound k at time j [11]. The above equation 
assumes linear additivity of the individual 
component signals and an absence of system- 
atic error in the measurement process. 

Equation (1) can be more conveniently 
expressed as the product of two matrices: 

[D] = [A] [C], (2) 

where [A] is an s by n matrix containing the 
normalized spectra of the n components, and 
[C] is an n by t matrix containing chromato- 
graphic concentration profiles of the 
corresponding components. 

Of course, real data contains noise (in- 
determinate error) and it is a primary goal of 
principal component analysis to extract and 
partition this uncorrelated variance from the 
raw data matrix, thus allowing estimation of 
the true dimensionality or rank of the data. It is 
assumed that the true rank of the data will be 
equal to the number of components within the 
chromatographic peak, provided the following 
requirements are met: (i) the chromatographic 
profiles (i.e. shape and retention times) of the 
individual components do not exactly overlap; 
(ii) the spectral patterns of each component are 
measurably different (i.e. the correlation co- 
efficient between the spectra is less than a 
value determined by the spectral resolution of 
the detector); (iii) systematic errors, such as 
those produced by the process of spectral 
scanning as the peak elutes, are either absent 
or corrected for. 

The first stage of a factor analysis usually 
involves the decomposition of either the co- 
variance matrix or the correlation matrix [18] 
to obtain the associated eigenvectors according 
to the relation: 

c x  = xx  (3)  

the column vectors, k, being subsequently 
ordered such that hi >- •2 ~-~ • • • :> )kn --~ 0. 

The next stage, and this is a far from trivial 
procedure, is to determine how many of these 
eigenvectors are required to adequately 
describe the rank or dimensionality of the 
system. Although this is an area of continuing 
research, as evidenced by some recent papers 
published on this topic [17, 19, 20], at the time 
of writing no generally applicable approach 
had been universally accepted. 

Finally, the principal components (normally 
referred to as factors after this rotation step) 
can be rotated in the direction of the con- 
stituent'vectors within the pre-determined sub- 
space. The aim of this rotation is to produce a 
simplification of the data structure by minimiz- 
ing the number of variables that have high 
loadings on a particular factor. Thus if the 
partial similarity of a factor with many vari- 
ables is eliminated by emphasising the strong 
similarity (or dissimilarity) of that factor with a 
few variables, the data are structured into a 
more easily interpretable form. This can be 
readily achieved using the Varimax technique 
[11], whereby the mutually orthogonal prin- 
cipal components are rotated so that the total 
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sum of squares of the loadings along each new Finnigan TSPII thermospray device to a HP 
axis (or factor) is maximized. 1050 Quaternary LC system. 

Application of multivariate techniques to peak 
purity analysis 

The data matrices generated by L C - D A D  
and by LC-thermospray-MS systems are 
characterized by intrinsically different infor- 
mation content. Thus MS data are much more 
likely to display clusters of ions representing 
individual components coeluting under the 
chromatographic peak envelope, than are UV 
data to yield specific spectral regions which 
characterize each component in the over- 
lapping peak. In both cases the utility of 
multivariate analysis is expected to depend on 
the relative peak concentrations, the extent of 
peak overlap, the degree of similarity of the 
spectra and the noise characteristics of each 
system. 

However the higher information content of 
mass spectra, which consequently require 
larger data matrices than UV spectra acquired 
during chromatography, implies that LC-MS 
should be at least as effective as L C - D A D  in 
detecting the presence of overlapping peaks by 
multivariate analysis, except in the case of 
structural isomers. 

In the present work the use of factor analysis 
is discussed for estimating the rank of a 
multivariate data set and for the detection of 
minor coeluting impurities using L C - D A D  
and LC-thermospray-MS in the separation of 
drugs and related substances. Some novel 
graphical approaches for visualising the results 
of PCA are presented; these have been 
specifically designed for L C - D A D  and LC-  
MS data. 

Experimental 

DAD instrumentation 
A Varian LC Star System Workstation 

(Varian Associates, Walnut Creek, CA, USA) 
operating on a Compaq Deskpro 286 computer 
was used to manage a Varian 9010 Solvent 
Delivery System fitted with a Rheodyne 7125 
manual loop (10-~1) injection valve and a 
Varian Polychrom 9065 detector. 

MS instrumentation 
A Finnigan MAT TSQ 700 triple stage 

quadrupole mass spectrometer operating on a 
DEC Station 2100 was interfaced through a 

Column and eluent 
LC-UV. A 5-1xm Spherisorb $ 5 0 D S - 2  

(25 cm x 4.6 mm i.d.) reversed-phase column 
was used in conjunction with methanol-water 
(30:70, v/v) as mobile phase. 

LC-MS. A txBondapak (Waters) cyano 
column (5-txm material, 12.5 cm x 4.6 mm 
i.d.) was employed as stationary phase. The 
mobile phase composition was: ammonium 
acetate (0.5% w/w; pH 6.0)-methanol (25:75, 
v/v). The buffer was adjusted to pH 6.0 with 
glacial acetic acid prior to mixing. 

Reagents and materials 
Methanol (HPLC grade, Rathburn Chem- 

icals, Walkerburn, UK), ammonium acetate 
('Analar', BDH Lab supplies, Poole, UK) and 
glacial acetic acid ('Analar', BDH Lab 
supplies, Poole, UK) were used as received. 
The buffer salt was dissolved in distilled water 
and filtered using Millipore 0.45-Im filters. 

Theophylline (Batch number: T-1633) and 
paraxanthine (Batch number: 38f40581) from 
Sigma Chemical Co. (St Louis, MO, USA) 
were used as received (Fig. 1). The two drug 
substances, COMPD1 (MW 390) and 
COMPD2 (MW 362) (Fig. 2) employed in the 
LC-MS studies were kindly provided by 
Sterling Research Group (Alnwick, UK). 

Standard solutions of each of the analytes 
alone, and in binary mixtures, were prepared 
in the appropriate HPLC mobile phase. A 
solution of COMPD1 spiked with 10% w/v of 
COMPD2 solution, was aged for a period of 10 
weeks, by storage under ambient light at room 
temperature. 

Selection of data submatrix for SPSS/PC+ 
software package 

A submatrix of each data set was selected for 
manual input into the SPSS/PC+ Version 3.0 
statistical software package (SPSS Inc., 444 N. 
Michigan Avenue, IL 606611, USA). 

LC-UV. Spectra (220-287 nm) were 
selected at regular 0.05 min intervals through- 
out the chromatographic peak, producing 15 × 
15 submatrices of spectrochromatographic 
data. 

LC-MS. Spectra (composed of the 10 most 
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Figure 1 
Structures of theophylline and paraxanthine. 
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Figure 2 
Structures of the parent compound (COMPDI) and a 
potential process impurity (COMPD2). 

abundant ions, as determined at the chromato- 
graphic peak apex) were taken at 1.0 s inter- 
vals throughout the chromatographic peak, 
producing 20 x 10 submatrices of spectro- 
chromatographic data. 

Results and Discussion 

LC-DAD experiments 
The data summarized for the sample sol- 

utions analysed by the photodiode array 
detector are presented in Tables 1-4. Table 1 
shows quite clearly that even for a concen- 
tration range of standard solutions between 
0.02 and 0.50mg m1-1, representing an 
absorbance range from 25 to 600 milliabsorb- 
ance units (mAU), the eigenvalue for the first 
principal component (or factor) remains very 
stable. There is in fact only a very small, but 
nonetheless predictable, increase in the eigen- 
value for the second PC or factor as the 
concentration level is decreased, emphasizing 
the excellent signal-to-noise ratio of the 
detector. 

Another important feature of these data, as 
highlighted by Table 2, is the apparent lack of 
any other significant sources of systematic 

variability. The orthogonal rotation of the 
principal axes within the pre-determined sub- 
space was attempted, but succeeded only in 
reproducing the original eigenvalues, as shown 
in Table 1, because of the lack of significant 
latent variability. This gives a further indi- 
cation of the presence of only one component 
in this dataset. 

The data in Table 3 give unequivocal evi- 
dence that a second source of systematic 
variation is present for the solutions spiked 
with theophylline. However, this is only true 
for concentrations at 10% w/v and above. The 
case for detection of impurity in the solution 
spiked at 2% w/v is doubtful. Although the 
second eigenvector certainly exceeds that of 
the 'noise predictor' for the corresponding 
standard solution, the Varimax routine is 
unable to rotate the principal axes to 
emphasize any latent variability in the secon- 
dary eigenvalues, which would permit them to 
be more readily detected (Table 4). 

It could be argued that the possibility of an 
empirically based method for rank deter- 
mination is suggested by the results in Tables 
1-4. If one assumes that the second eigenvalue 
is indeed due to indeterminate error from the 
PCA-factor analysis of a standard solution, 
then the use of this value for the determination 
of the noise threshold level may be possible. 
Repeated injections of the standard could 
ultimately facilitate the incorporation of a 
confidence interval for the expected noise 
threshold at the desired probability level. 

LC-MS experiments 
As indicated in the experimental section, the 

LC was linked to the mass spectrometer via a 
thermospray interface. This produced the 
somewhat noisy total ion chromatograms as 
typified by Fig. 3. Even the most optimistic of 
analysts would not normally attempt to investi- 
gate the composition of such a chromatogram 
if it had been produced by any other detector. 
However, it was hoped that the excellent 
selectivity and sensitivity of the mass spectro- 
metric detector would, in combination with the 
factor analysis approach, yield some meaning- 
ful answers as to the underlying structure of the 
data. 

Presented graphically in Fig. 4 are the 
eigenvalues produced from the decomposition 
of the transpose of the raw data matrices of the 
solutions: (A) freshly prepared; and (B) after 
storage under the prescribed conditions. A 
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Table 1 
Comparison of the principal component eigenvalues for a series of pure paraxanthine standard solutions of decreasing 
concentration 

Principal components 

Solution Conc. (mg m1-1) PC1 PC2 PC3 PC4 

l 0.50 13.9999 0.00004 0.00003 0.00000 
2 0.10 13.9999 0.00007 0.00000 0.00000 
3 0.02 13.9997 0.00016 0.00005 0.00003 

Table 2 
Comparison of the rotated principal component eigenvalues for a series of pure paraxanthine standard solutions 

Factors 

Solution Conc. (mg m1-1) F1 F2 F3 F4 

1 0.50 13.9999 0.00004 0.00003 0.00000 
2 0.10 13.9999 0.00007 0.00000 0.00000 
3 0.02 13.9997 0.00016 0.00005 0.00003 

Table 3 
Comparison of the principal component eigenvalues for a series of paraxanthine standard solutions (0.1 mg m1-1) spiked 
with decreasing levels of theophylline 

Principal components 

Solution % w/v TH level PC1 PC2 PC3 PC4 

4 50 13.7054 0.29440 0.00013 0.00001 
5 10 13.9973 0.00269 0.00004 0.00000 
6 2 13.9996 0.00020 0.00011 0.00003 
7 1 13.9999 0.00009 0.00003 0.00000 
2 0 13.9999 0.00007 0.00000 0.00000 

Table 4 
Comparison of the rotated principal component eigenvalues for a series of paraxanthine standard solutions (0.1 mg m1-1) 
spiked with decreasing levels of theophylline 

Factors 

Solution % w/v TH level F1 F2 F3 F4 

4 50 7. 92090 6. 07900 0. 00016 0. 00001 
5 10 7.13210 6. 86825 0.00005 0.00000 
6 2 13.9997 0.00020 0.00005 0.00000 
7 1 13.9999 0.00009 0.00003 0.00000 
2 0 13. 9999 0. 00007 0. 00000 0. 00000 

novel method for presenting the transposed 
data from LC-MS is illustrated in Figs 5 and 6. 
These represent the eigenvalues of the trans- 
pose, D', of the original raw data matrix, D. By 
this method it is clear that the inherent 
structure within the individual eigenvectors is 
better represented when plotting these latent 
ion vectors in retention time space. 

In essence, this new technique is analogous 
to that developed concurrently with the 
present work by Kvalheim et al. [17], who 
analysed selected regions in spectrochromato- 
grams by LC-DAD. However, for thermo- 

spray mass spectrometry, which produces little 
if any fragmentation of the quasi-molecular ion 
and hence few or no common ions, the effect is 
to produce characteristic groupings of ions for 
each component. 

This is illustrated in Fig. 6, where the unique 
ions for both COMPD1 and COMPD2 are 
closely grouped together. Of course PCA is not 
able to extract all the error from the data; that 
which is imbedded or non-orthogonal to the 
principal component axes will remain [13]. 
This imbedded error is responsibile for the fact 
that ions m / z  413 and m / z  345 are separated 
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Figure 3 
Total ion chromatogram of a 0.2 mg m1-1 C OM P D1 standard solution obtained by thermospray L C - M S .  
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Figure 4 
Graphical representat ion of the  principal components  
produced by L C - M S  of a 0.2 mg m1-1 s tandard solution of 
COMPD1,  spiked with 0.02 mg ml. -1 of COMPD2.  (A),  
fresh solution; (B), solution stored at room tempera ture  in 
ambient  light for 10 weeks. Solid block, unrota ted  data; 
hatched block, data after Varimax rotation. 

from the main component cluster at m/z 391. 
The main outlier from these two clusters of 
data is, however, the m/z 278 ion in the bottom 
left corner of the plot. This unexpected ion was 
further investigated by plotting the normalized 
single-ion chromatogram (after smoothing) to 
ascertain whether it represented a partially 
resolved coeluting impurity (Fig. 7). The 
resultant plot is inconclusive, but it must be 
borne in mind that (assuming that the response 
factor is similar to that of COMPD1), this ion 
probably represents a concentration of the 
minor component of less than 0.2% w/w in the 
fresh solution of COMPDI.  However, by 
plotting the single ion intensity of the m/z 278 
and the m/z 391 ions for the stored solution 
(Fig. 8), it is possible to see that the level is 
now sufficient (ca 0.5% w/w) to produce an 
identifiable chromatogram for a third solute, 
well resolved from that of COMPD1. This 
solute was subsequently identified as the 
hydrolysis product of COMPD1, whose con- 
centration was, as expected, found to increase 
with time on storage in aqueous solution. 

Conclusions 

A certain amount of the data in a spectro- 
chromatogram is low in information content or 
even redundant. This is particularly true for 
mass spectrometric data. Principal component 
analysis and factor analysis offer a means of 
extracting the pertinent information from the 
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Figure 5 
Plot of the eigenvector loadings in reduced factor space for 
the thermospray LC-MS of standard solution of 
COMPD1, after Varimax rotation. 
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Figure 6 
Plot of the eigenvector loadings in reduced factor space for 
the thermospray LC-MS of a 0.2 mg ml i standard 
solution of COMPD1, spiked with 0.02 mg m1-1 of 
COMPD2, after Varimax rotation. 

data set by what is essentially a form of data 
compression. The technique can improve the 
effective signal-to-noise ratio and can ulti- 
mately lead to increased interpretability of the 
data. 

The technique does not require a priori  
knowledge of the potential coeluting impurities 
either in the spectral or time domains. A major 
advantage of this approach over its univariate 
counterparts for peak purity assessment is 
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Figure  7 
Selected ion plots (at 300 ms per scan) for a fresh solution 
of COMPD1 spiked at 10% w/v with COMPD2, revealing 
the coelution of an ion at m/z  278. Data in these plots were 
smoothed using a three-point moving average algorithm, 
prior to normalization. - -  m/z 391; m/z  363; . . . .  
m/z 278. 
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Figure 8 
Selected ion plots (at 300 ms per scan) for a solution of 
COMPD1 spiked at 10% w/v with COMPD2, showing the 
increased level of the ion at m/z 278, after storage (cf. Fig. 
4). Data treatment and key as in Fig. 7. 

therefore its suitability for incorporation into 
an expert system. 

The novel presentation of eigenvector load- 
ings on each factor, plotted in reduced factor 
space, adequately demonstrates the advantage 
of utilizing the structural information content 
of the eigenvectors, rather than simply con- 
densing down the information into a single- 
figure eigenvalue. This information was found 
to facilitate the location of characteristic 
groupings of ions for the thermospray data, 
leading to the generation of single-ion plots for 
the individual components eluting under the 
same chromatographic envelope. The success 
of this approach is clearly dependent on 
obtaining unique ions for an individual com- 
ponent with an adequate signal-to-noise ratio. 
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F u r t h e r  w o r k  in  this  a r ea  is c o n t i n u i n g  wi th  
the  d e v e l o p m e n t  of  m e t h o d s  for  a n a l y s i n g  the  
c o m p l e t e  L C - M S  d a t a  set  o u t p u t ,  r a t h e r  t h a n  
a p r e - s e l e c t e d  s u b - m a t r i x ,  wi th  a n d  w i t h o u t  
a d d i t i o n a l  i n f o r m a t i o n  f r o m  t a n d e m  p h o t o -  
d iode  a r r ay  d e t e c t i o n .  
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